Characterization of the long-terminal repeat single-strand tail-binding site of Moloney-MuLV integrase by crosslinking.

نویسندگان

  • Jorge Vera
  • Beatriz Valenzuela
  • Mónica J Roth
  • Oscar León
چکیده

Processing of viral DNA by retroviral integrase leaves a dinucleotide single-strand overhang in the unprocessed strand. Previous studies have stressed the importance of the 5' single-stranded (ss) tail in the integration process. To characterize the ss-tail binding site on M-MuLV integrase, we carried out crosslinking studies utilizing a disintegration substrate that mimics the covalent intermediate formed during integration. This substrate carried reactive groups at the 5' ss tail. A bromoacetyl derivative with a side chain of 6 A was crosslinked to the mutant IN 106-404, which lacks the N-terminal domain, yielding a crosslinked complex of 50 kDa. Treatment of IN 106-404 with N-ethylmaleimide (NEM) prevented crosslinking, suggesting that Cys209 was involved in the reaction. The reactivity of Cys209 was confirmed by crosslinking of a more specific derivative carrying maleimide groups that spans 8A approximately. In contrast, WT IN was not reactive, suggesting that the N-terminal domain modifies the reactivity of the Cys209 or the positioning of the crosslinker side chain. A similar oligonucleotide-carrying iodouridine at the 5'ss tail reacted with both IN 106-404 and WT IN upon UV irradiation. This reaction was also prevented by NEM, suggesting that the ss-tail positions near a peptide region that includes Cys209.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implication of a central cysteine residue and the HHCC domain of Moloney murine leukemia virus integrase protein in functional multimerization.

Moloney murine leukemia virus (M-MuLV) IN-IN protein interactions important for catalysis of strand transfer and unimolecular and bimolecular disintegration reactions were investigated by using a panel of chemically modified M-MuLV IN proteins. Functional complementation of an HHCC-deleted protein (Ndelta105) by an independent HHCC domain (Cdelta232) was severely compromised by NEM modification...

متن کامل

Assembly and catalysis of concerted two-end integration events by Moloney murine leukemia virus integrase.

Retroviral integration results in the stable and coordinated insertion of the two termini of the linear viral DNA into the host genome. An in vitro concerted two-end integration reaction catalyzed by the Moloney murine leukemia virus (M-MuLV) integrase (IN) was used to investigate the binding and coordination of the two viral DNA ends. Comparison of the two-end integration and strand transfer a...

متن کامل

Characterization of a preleukemic state induced by Moloney murine leukemia virus: evidence for two infection events during leukemogenesis.

A preleukemic state in mice inoculated with Moloney murine leukemia virus (Mo-MuLV) was characterized. Six to 10 weeks after neonatal inoculation, animals developed mild splenomegaly and generalized hematopoietic hyperplasia. The hyperplasia was evident from myeloid and erythroid progenitor assays. A nonleukemogenic variant, Mo+PyF101 Mo-MuLV, did not induce the hyperplasia; this suggests that ...

متن کامل

In vivo footprinting of the enhancer sequences in the upstream long terminal repeat of Moloney murine leukemia virus: differential binding of nuclear factors in different cell types.

The enhancer sequences in the Moloney murine leukemia virus (M-MuLV) long terminal repeat (LTR) are of considerable interest since they are crucial for virus replication and the ability of the virus to induce T lymphomas. While extensive studies have identified numerous nuclear factors that can potentially bind to M-MuLV enhancer DNA in vitro, it has not been made clear which of these factors a...

متن کامل

Intramolecular integration within Moloney murine leukemia virus DNA.

By screening a library of unintegrated, circular Moloney murine leukemia virus (M-MuLV) DNA cloned in lambda phage, we found that approximately 20% of the M-MuLV DNA inserts contained internal sequence deletions or inversions. Restriction enzyme mapping demonstrated tht the deleted segments frequently abutted a long terminal repeat (LTR) sequence, whereas the inverted segments were usually flan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biological research

دوره 41 1  شماره 

صفحات  -

تاریخ انتشار 2008